Applied machine learning to predict stress hotspots II: Hexagonal close packed materials
نویسندگان
چکیده
منابع مشابه
Grain neighbour effects on twin transmission in hexagonal close-packed materials
Materials with a hexagonal close-packed (hcp) crystal structure such as Mg, Ti and Zr are being used in the transportation, aerospace and nuclear industry, respectively. Material strength and formability are critical qualities for shaping these materials into parts and a pervasive deformation mechanism that significantly affects their formability is deformation twinning. The interaction between...
متن کاملUsing Machine Learning ARIMA to Predict the Price of Cryptocurrencies
The increasing volatility in pricing and growing potential for profit in digital currency have made predicting the price of cryptocurrency a very attractive research topic. Several studies have already been conducted using various machine-learning models to predict crypto currency prices. This study presented in this paper applied a classic Autoregressive Integrated Moving Average(ARIMA) model ...
متن کاملThe Strength of Binary Junctions in Hexagonal Close-Packed Crystals
A comparative study of non-coplanar binary dislocation junctions in magnesium (Mg) and beryllium (Be) is presented to examine the effects of elastic properties and active Burgers vectors on junction formation and destruction in hexagonal close-packed (hcp) crystals via discrete dislocation dynamics simulations. Two junction configurations formed at intersecting prismatic ð01 10Þ=basal ð0001Þ pl...
متن کاملThermodynamics of hexagonal-close-packed iron under Earth’s core conditions
The free energy and other thermodynamic properties of hexagonal-close-packed iron are calculated by direct ab initio methods over a wide range of pressures and temperatures relevant to the Earth’s core. The ab initio calculations are based on density-functional theory in the generalized-gradient approximation, and are performed using the projector augmented wave approach. Thermal excitation of ...
متن کاملDislocation Dynamics Simulations of Junctions in Hexagonal Close-Packed Crystals
The formation and strength of dislocations in the hexagonal closed packed material beryllium are studied through dislocation junctions and the critical stress required to break them. Dislocation dynamics calculations (using the code ParaDiS) of junction maps are compared to an analytical line tension approximation in order to validate our model. Results show that the two models agree very well....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Plasticity
سال: 2019
ISSN: 0749-6419
DOI: 10.1016/j.ijplas.2018.08.003